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Abstract
We studied the electron-paramagnetic resonance linewidth of colossal
magnetoresistance manganites. Starting from the quantum Langevin equation,
we derived the transverse susceptibility of the double-exchange interaction
systems and identified the damping function to be the inverse of the relaxation
time T2. We argued that the anisotropic energy caused by the crystal field
was the most probable relaxation mechanism. The spin correlation caused
by the double-exchange interaction was examined with the Schwinger boson
approach. Taking into account the constraints of Schwinger bosons, we found
that the linewidth is approximately proportional to the temperature. At the
low-temperature end (near the Curie temperature TC), there is a minimum,
below which the linewidth increases sharply. At the high-temperature limit,
the linewidth is proportional to

√
T/TC. Most importantly, the linewidth is a

universal function of T/TC.

1. Introduction

It was found 50 years ago that perovskite manganites (La1−xAxMnO3, where A is the divalent
element and x the doping concentration) show many interesting phenomena [1]. In the past 15
years, there has been a renewed interest in this kind of material due to the discovery of colossal
magnetoresistance (CMR) [2]. Later studies [3] revealed a complex phase diagram, e.g.
ferromagnetic insulator, ferromagnetic metal, paramagnetic insulator and antiferromagnetic
insulator and very rich physics, e.g. charge ordering, orbit ordering and the Jahn–Teller effect.
The fundamental mechanism in manganites is the double-exchange (DE) interaction, which
was first proposed by Zener [4] and later developed by Anderson and Kasegawa [5] and
de Gennes [6]. However, lattice distortion, orbital degeneracies and superexchange (SE)
interaction all play significant roles [7, 8]. The interplay of these interactions make these
systems even more complex and intriguing.

Among the studies on manganites, there is the electron-paramagnetic resonance (EPR)
experiment [9–15], which is very helpful for understanding the magnetism-related interac-
tion and spin correlation. Peak position and peak intensity provide information about the
g-factor and constituents. From the linewidth, one can find clues to the coupling strength,
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spin-relaxation mechanism and susceptibility. Results of previous experiments showed that the
linewidth of EPR spectra in the paramagnetic phase increases almost linearly with temperature
[10–14]. The origin is not clear. It was suggested to be spin-lattice relaxation [12]. A more
recent analysis of experimental data [13] proposed an expression, C(T − θ)/T , for linewidth
and achieved a good fit. However, there is obviously more work to be done. The most
important task is a rigorous derivation of linewidth from the fundamental mechanism. This
is the aim of the present study. First, we construct the relation between susceptibility and
the relaxation time of spins using the Langevin equation. This is presented in section 2. In
section 3, the DE interaction Hamiltonian is reduced to a simpler form. We calculate the spin-
correlation function and susceptibility in section 4 and present the results with some discussion
in section 5.

2. Formalism of transverse susceptibility

The EPR lineshape can be computed from the transverse susceptibility. Suppose that, in
addition to a static magnetic fieldH0 in the z-direction, one applied microwaves with magnetic
field in the x-direction to the system. The real (imaginary) part of the transverse susceptibility
is given by the magnetization in the x(y)-direction divided by the microwave magnetic field.
By solving the Bloch equations [16], the transverse susceptibility is given by

χ(ω) = − �χ0

2(ω −�+ i/T2)
, (1)

where � = gµBH0 and χ0 = Mz/H0, is the static susceptibility. The linewidth is usually
denoted as 1/T2. There are many ways to calculate the transverse susceptibility and, hence,
1/T2. In this paper, we adopt the method of the quantum Langevin equation [17]. Using
this method, we were able to treat a microscopic mechanism systematically. We start with
the linear response theory. The negative imaginary part of the transverse susceptibility is
given by [18]

χ′′(ω) = (gµB)
2

4V
Re

∫ ∞

0
eiωt〈[S−, S+(t)]〉dt, (2)

where S is the total spin of the system; 〈x〉 represents the thermal average of operator x and h̄
was set to unity. Without loss of generality, the above equation can be written as

χ′′(ω) = (gµB)
2

4V
Re

∑
l,m

(S−)ml(S+(ω))lm(e−βEm − e−βEl ). (3)

Equation (3) can be calculated with the Langevin equation of S+(t),

dS+(t)
dt

= −i�S+(t)−
∫ t

0
�(t − s)S+(s)ds+ R(t), (4)

where R(t) is the random force (〈R(t)〉 = 0) and�(t) is the damping function. After Laplace–
Fourier transform, equation (4) has the form

S+(ω) = i[S+(t = 0)+ r(ω)]

ω −�+ iφ(ω)
, (5)
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where r(ω) and φ(ω) are the Laplace–Fourier transforms of R(t) and �(t), respectively.
Substituting equation (5) into equation (3), one can calculate χ′′(ω),

χ′′(ω) = (gµB)
2

4V
(1 − e−β�)Re

−i〈S+S−〉
ω −�+ iφ(ω)

. (6)

By comparing with equation (1), we identified Re φ(ω) with 1/T2.
�(t) is a force–force correlation function. (Interested readers are referred to the works of

Kubo [17] and Mori [19]),

�(t) = kBT

〈S+S−〉
∫ β

0
dλ〈eλHṠ+(t)e−λHṠ−〉. (7)

There are at least two ways of calculating φ(ω). Mori [19] developed a method of continual
fractions. We found that the fractions quickly become complicated and intractable in the
double-exchange system. Therefore we adopted the approach proposed by Ting and Nee [20].
Inserting complete sets of states into equation (7), we obtain

�(t) = 1

〈S+S−〉
∑
n,m

e−βEm − e−βEn

βEnm
Ṡ+nmṠ−mneiEnmt. (8)

Hence,

φ(ω) = − 1

〈S+S−〉
∑
n,m

e−βEm − e−βEn

βEnm

Ṡ+nmṠ−mn
iω + iEnm − η

. (9)

Its real part is

Re φ(ω) = π

〈S+S−〉
∑
n,m

e−βEm − e−βEn

βEnm
Ṡ+nmṠ−mnδ(ω + Enm). (10)

Finally, we have

Re φ(ω) = Im
ψ(ω)− ψ(0)

ω
, (11)

where

ψ(ω) = ikBT

〈S+S−〉
∫ ∞

0
dt〈[Ṡ−, Ṡ+(t)]〉eiωt (12)

is the response function of Ṡ+. Equation (11) is readily obtained by inserting complete sets of
states between the operators of equation (12). Now, we are ready to apply the above method
to the physical systems we are interested in. Our strategy is to calculate the relevant terms of
ψ(ω)with Matsubara formalism and then use analytical continuation. The result is substituted
into equation (11) to evaluate the linewidth.

3. Double-exchange interaction

The fundamental mechanism in CMR manganites is the DE interaction. The Hamiltonian has
the following form:

H = −t
∑
k,σ

c
†
iσcjσ + J

∑
i

Si · σi + gµBH0

∑
i

Siz. (13)
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The first term of equation (13) describes the hopping of the holes between Mn+3 and Mn+4

sites. The second term is Hund’s coupling, when combined, they give the DE interaction. The
third term is due to the applied field. In the hole picture, the manganese ions have a spin,
S = 2. Whenever a hole is present, the local spin is coupled strongly with the spin of the
hole. According to Hund’s rule, the antiparallel state has the lower energy. The level spacing
J is of the order of eV and, hence, is the largest energy in the system. To treat it correctly,
we used the approach proposed by Kubo and Ohata [21]. They used projection operators
to impose a restriction on holes. Hoppings can only occur at those sites where the local
spins are antiparallel to those of holes. Thus, the first and second terms of equation (13) are
replaced by

HDE = −t
∑

i,j,α,β,γ

c
†
iαPiαγPjγβcjβ, (14)

where α,β and γ are spin indices and

Pi = S − Si · σ
2S + 1

, (15)

with σ/2 denoting the spins of the conduction holes. It has been shown that HDE in equation
(14) is equivalent to the following Hamiltonian [22–24]:

HDE = − t

2S + 1

∑
i,j

f
†
i (A

†
jAi + B

†
jBi)fj, (16)

where the slave-fermion method was applied:

ci↑ = fiαi, (17a)

ci↓ = fiβi (17b)

and the spin-up and spin-down operators α and β combined with the localized spins were
represented by the Schwinger boson operators A and B:

A†|S − 1/2,m− 1/2〉 = √
S +m|S,m〉, (18a)

B†|S − 1/2,m+ 1/2〉 = √
S −m|S,m〉. (18b)

There is a constraint due to the slave fermion and Schwinger boson approaches [25]

A
†
iAi + B

†
i Bi + f

†
i fi = 2S. (19)

In the momentum space, we have

HDE = − 1

N(2s+ 1)

∑
k,p,q

Ek−p−qf
†
k−q(ApA

†
p+q + BpB

†
p+q)fk, (20)

where

Ek = t
∑
n.n.

eik·Rnn , (21)

with the summation being over the nearest neighbours. It is clear that the bosons and fermions
are closely related to each other. To show the implications of the Hamiltonian in equation (20),
we give the boson and fermion energies at the mean-field level, respectively, as follows:

ωq = 1

N(2s+ 1)

∑
k

Ek+q〈f †
kfk〉 (22)
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and

εk = 1

N(2s+ 1)

∑
p

Ek+p〈A†
pAp + B†

pBp〉. (23)

Thus we have simplified the DE Hamiltonian considerably.
There exists an SE interaction between manganese ions. The manganites exhibit an

antiferromagnetic phase whenever the DE interaction is diminished. The Néel temperature
is about 200 K. This indicates that the SE interaction coupling JSE is of the order 1 meV
or t/100. In the temperature range 300–1000 K, the thermal fluctuation is more important
than that caused by the SE interaction. The latter can be accounted for with random-phase
approximation [26]. The interaction between manganese ions (indirect exchange through the
DE interaction) is ‘screened’ by the factor, 1 + JSE/(iωn − ω0), where ω0 is the spin-level
splitting. This, in effect, decreases the spin stiffness and the TC. In the following calculation,
we more or less incorporate the effect of the SE interaction by using an effective spin stiffness.
On the other hand, as the fluctuation caused by the SE interaction is more important near the
TC, we expect the slope of 1/T2 to decrease as the low-temperature end is lifted.

4. Relaxation

The reason for broadening in the EPR spectra is not clear. The dipolar interaction is too small in
magnitude. It produces a linewidth of a few G. The Dzyaloshinsky–Moriya (DM) interaction
[27] is a possible candidate. The ESR data of Alejandro et al [28] on La7/8Sr1/8MnO3 suggests
that the DM interaction is of the order 0.4 K. The data of [29] gives the order of 1 K, the analysis
of Huber et al [30] gives 0.8 K and that of Deisenhofer et al [31] gives 0.25 K. However, note that
all the above studies are concerned with the insulating region, i.e. small doping. In the metallic
region that we are interested in, the DM interaction will be much smaller for the following
reasons. First, the lattice distortion is smaller. Secondly, the electron orbits are less localized
and the orbital characteristics are less manifest. Lastly, the broadening should have been closely
related to the Lande-g factor if indeed the DM interaction was the cause [27]. Experimental
data [13] showed that g � 2.0, an indication that the DM interaction is not robust.

Lattice distortion is another possibility; however, the phonon-related mechanism should
have given a different temperature dependence. We have a more detailed discussion in the
next section. The remaining candidate is the anisotropy energy of spins. In manganites,
a manganese ion and neighbouring oxygen atoms formed an octahedron. Two octahedrons
were rotated in the opposite direction and the bond angle of Mn–O–Mn deviated from π.
Incidentally, experiments [32] showed that the bond angle affected the bandwidth, hence, it is
an important parameter. For our purpose, the deviation of bond angle or bond bending broke
significantly the cubic symmetry. In a system of cubic symmetry, the degeneracy of d-orbitals
was lifted partially to eg and t2g orbitals. At systems with still lower symmetry, such as those
in the presence of tetragonal distortion, an additional ligand field should be introduced into the
Hamiltonian. It takes the form B2O

0
2, where O0

2 is a spin operator and B2 is the field strength
[33]. Thus, we have the following general form of an additional term in our Hamiltonian:

Hani =
∑

i

(FS2
ix +GS2

iy), (24)

where F and G are constants. Since the DE interaction conserves total spin, we found

Ṡ+ = i[Hani, S+]

= − i

2

∑
i

[(F −G)(Si−Siz + SizSi−)+ (F +G)(Si+Siz + SizSi+)]. (25)
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Hence,

〈[Ṡ+(t), Ṡ−]〉 = 1

4

∑
i,j

{(F −G)2〈[Siz(t)Si−(t)+ Siz(t)Si−(t), SjzSj+ + Sj+Sjz]〉

+ (F +G)2〈[Siz(t)Si+(t)+ Si+(t)Siz(t), SjzSj− + Sj−Sjz]〉}. (26)

Since the calculation was performed in the paramagnetic phase, i and j have to be equal.
Furthermore, equation (26) can be simplified to the following form since the decouplings, such
as 〈Siz(t)Si+(t)SizSi−〉 ≈ 〈Siz(t)Siz〉〈Si+(t)Si−〉, are good approximations in the paramagnetic
phase:

〈[Ṡ+(t), Ṡ−]〉 = 〈S2
z 〉
N

∑
i

{(F −G)2〈[Si−(t), Si+]〉 + (F +G)2〈[Si+(t), Si−]〉}. (27)

To calculate ψ(ω), we replaced the spin operators by Schwinger boson operators

S+i = A
†
i Bi, (28a)

S−i = B
†
i Ai, (28b)

and introduced their respective Green functions

D̃iA(τ) = −〈TAi(τ)A†
i 〉, (29a)

D̃iB(τ) = −〈TBi(τ)B†
i 〉. (29b)

Substituting equations (27)–(29) into equation (12), we obtained

ψ(iωn) = kBT

2N

∑
i

∫ β

0
dτ eiωnτ[(F −G)2D̃iA(−τ)D̃iB(τ)

+ (F +G)2D̃iA(τ)D̃iB(−τ)]. (30)

In the paramagnetic phase, the zeroth-order spin propagators are

DA(q, iωn) = DB(q, iωn) = 1

iωn − ωq
. (31)

Applying Fourier transform and Matsubara summation, we obtain

ψ(iωn) = kBT

N2
(F 2 +G2)

∑
p,q

np − nq

iωn − ωp + ωq
, (32)

where np(q) is the Bose–Einstein distribution function. Substituting equation (32) into equation
(11), we obtained

Re φ(ω) = −πkBT
N2

(F 2 +G2)
∑
p,q

nq − np

ωq − ωp
δ(ω − ωp + ωq). (33)

If one writes

ωq = Dq2, (34)

where D is the spin stiffness, equation (33) can be reduced to

Re φ(0) = − πkBTV
2

(2π)6N2

∫
d3p

∫
d3qδ(ωp − ωq)

∂np

∂ωp

= − (kBTa
3)2

2(2πD)3
(F 2 +G2) ln |1 − z|, (35)
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with z being the fugacity and a the lattice constant. The fugacity is related to the constraint of
the Schwinger bosons. In view of equation (19), the constraint in momentum space is∑

q

A†
qAq = N(S − x/2), (36)

where we have made the approximation of replacing local constraints with a global constraint
and used the fact that in the paramagnetic phases A and B, bosons are equally populated. It
is important to distinguish betweenD and the usual spin wave stiffness. The relation between
spin operators and Schwinger bosons are, for example, S+ = A†B. Clearly, they are not
the same. The spin wave propagator is a convolution of those of Schwinger bosons. Spin
wave stiffness should be computed accordingly. Here, we are not concerned with spin waves.
Equation (36) can be written as(

kBTa
2

4πD

)3/2

g3/2(z)+ z

N(1 − z)
= (S − x/2), (37)

where the second term comes from the state at q = 0 [34], and

gn(z) = 1

�(n)

∫ ∞

0

xn−1 dx

z−1ex − 1
, (38)

with �(n) being the gamma function. It is necessary for the ferromagnetic phase for the
following reasons. If the dispersion relation of equation (22) were used, we would have
D ≈ xta2/(2S+ 1). For a typical system of t = 0.1 eV, x = 0.3 and T = 200 K, the prefactor
of g3/2(z) is approximately 0.13. Since S = 2 and the largest value of g3/2(z) is g3/2(1) ≈ 2.6,
the presence of the second term of equation (37) is necessary. This is an indication that the spin
stiffness given above needs to be revised. It is valid at a low temperature. As the temperature
increases, the motion of holes will be impeded by spin fluctuations. As a result, the coupling
between spins will be weakened and the spin stiffness is decreased. The computation of the
actual value of D is very complicated and beyond the scope of this paper. Hence, we used a
simple approach here. We assume that, at the Curie temperature, the second term on the left
hand side of equation (37) vanishes, i.e.(

kBTCa
2

4πD

)3/2

g3/2(1) = (S − x/2). (39)

We evaluatedD in this way. Above TC, the system is always insulating and the spin orientations
are random. We can assume that D remains more or less temperature-independent in the
paramagnetic phase. Now, the fugacity can be computed with the following equation:(

T

TC

)3/2
g3/2(z)

g3/2(1)
= 1 (40)

for temperatures greater than TC. Substituting equation (39) into (35), we obtained

1

T2
= Re φ(0) = −4

F 2 +G2

kBTC

(
S − x/2

g3/2(1)

)2 (
T

TC

)2

ln |1 − z|. (41)

Equations (40) and (41) are our final result.
In retrospect, the major mathematical structure is the factor ∂np/∂ωp in equation (35). It

is quite robust. Its presence is not affected by taking into account the self-energy of boson
propagators. We show this in the appendix. Hence, the expression in equation (41) seems to
be universal.
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Figure 1. The linewidth, �Hpp, or the peak-to-peak magnetic field difference against T/TC for
F = G = 2 K.

5. Results and discussion

All the experimental data showed that the EPR linewidth of manganites with doping between
0.2 and 0.4 has a quasi-linear dependence on temperature. Our calculation has a similar result
(figure 1). At the low-temperature end (near Curie temperature TC), there is a minimum. Below
the minimum, the linewidth increases sharply. With increase in temperature, the linewidth
increases almost linearly. It bends downward in the high-temperature region. The quasi-linear
dependence on temperature has been attributed to various sources, notably the one-phonon spin-
lattice relaxation proposed by Huber and Seehra (HS) [35] and Dormann–Jaccarino–Huber’s
(DJH) [36–38] consideration of dipolar interaction or any other temperature-independent
interaction. In any case, spin-lattice relaxation cannot give the correct temperature dependence.
For example, in equation (A-5) of [3],χT kBT is almost constant in the high-temperature region.
The phonon distribution function np,q gives a factor of kBT . The spin correlation function
introduces additional temperature dependence, except for, perhaps, in the high-temperature
limit. Thus 1/T2 cannot be quasi-linear. As for DJH’s explanation, we found in Huber’s
original derivation [37, 38] that 1/T2 is proportional to kBTξ5/2. The correlation length ξ has
to be temperature-independent for 1/T2 to be linearly proportional to T . This is unlikely and,
hence, we concluded that neither can produce linear temperature dependence.

There is a sharp upturn at the low-temperature end. Experimentally, all the powder samples
showed this kind of behaviour. Data from single-crystal samples are not conclusive. Therefore
there was ambiguity as to whether it is a sample-dependent effect. Our calculation showed that
it is intrinsic. The cause is the divergence of ln(1 − z) at TC. It is universal. At temperatures
close to TC [39],

g3/2(z)� g3/2(1)− 3.54
√
δz, (42)

where δz = 1 − z. In view of equation (40), we obtained

δz� 1.23ε2, (43)
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where ε = T/TC − 1. Thus we concluded that, near TC, the divergence is of the form

1

T2
∝ −ln ε. (44)

The high-temperature behaviour of linewidth is straightforward. In view of equation (40),
g3/2(z) and, hence, z is small. Since

g3/2(z) =
∑
n

zn

n3/2
, (45)

we have, for T → ∞,

z� g3/2(1)

(
TC

T

)3/2

. (46)

Hence,

1

T2
= Re φ(0) −→ 4g3/2(1)

(
S − x/2

g3/2(1)

)2
F 2 +G2

kBTC

√
T

TC
. (47)

This is compatible with the experimental evidence [13] showing deviation (bending downward)
from linear temperature dependence.

In all the experiments, 1/T2 is a fraction of a Tesla. In view of equation (40), F and G
being 1 K is enough to give the linewidth. A careful analysis of EPR data [29] indicated that
this magnitude is reasonable. The only discrepancy between our calculation and experimental
results is in the magnitude of the minimum 1/T2. This discrepancy may be due to our treatment
of the constraints. We have replaced the constraint on each site (equation (19)) by a global one
(equation (36)). If the local constraints were restored, the correlation between spins became
stronger. The fluctuation (1/T2) would be suppressed. Improvement on this point is one of
our ongoing projects.

It has been proposed in [30, 37, 38] that linewidth has the following form over the high-
temperature range:

�Hpp = [χ0(T )/χ(T )]�Hpp(T → ∞), (48)

where χ(T ) and χ0(T ) are, respectively, the susceptibilities of the spins with DE interaction
and isolated spins. The argument is that, when the temperature is higher than all the energy
scales, the response function 〈[Ṡ(τ), Ṡ]〉 should be independent of temperature. Therefore it is
interesting to examine whether double-exchange systems follow this relation. Equation (13)
can be written in terms of Schwinger boson operators as follows:

H = − 1

N(2s+ 1)

∑
k,p,q

Ek−p−qf
†
k−q(ApA

†
p+q + BpB

†
p+q)fk + gµBH0

2

∑
q

(A†
qAq − B†

qBq).

(49)

The susceptibility has the form

χ(T ) = − 1

V

∂2F
∂H2

0

= β

V

(gµB

2

)2
{ 〈[∑

q

(A†
qAq − B†

qBq)

]2〉
−

〈∑
q

(A†
qAq − B†

qBq)

〉2 }
,

(50)

where F is the free energy. Note that

〈A†
qAqA

†
qAq〉 − 〈A†

qAq〉2 = − 1

β

∂np

∂ωp
(51)
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Figure 2. �Hpp[χ(T )/χ0(T )] against T/TC for F = G = 2 K, where χ(T ) and χ0(T ) are the
susceptibilities of the double-exchange system and isolated spins, respectively.

and

〈A†
qAqB

†
qBq〉 = 〈A†

qAq(2S − x− A†
qAq)〉2. (52)

As a result, we obtained

χ(T ) = − (gµB)
2
∑

q

∂np

∂ωp

= (gµB)
2

8π2D

√
πkBT

D
g1/2(z), (53)

where g1/2(z) was defined in equation (38) and z, the fugacity, can be evaluated with equation
(40). Thus we can plot �Hpp[χ(T )/χ0(T )] against T/TC. In figure 2, we see that there
is still reminiscent temperature dependence away from TC, even though χ(T )/χ0(T ) is
a monotonically decreasing function of T . The reason, we think, is that the constraints
(19) exist throughout the temperature range. Through equations (39) and (40), their
presence affected the value of fugacity, which, in turn, affected the temperature dependence
of �Hpp.

Perhaps our most important result is that 1/T2 is a universal function of T/TC. That is to
say, the linewidth multiplied by TC plotted against T/TC from different systems, lies on the
same curve. The doping concentration x affected T2 only through TC. In practice, it may be
more complicated. SE interaction and Jahn–Teller distortion will affect TC and they are not
accounted for by our calculation. However, there is experimental evidence for the universal
behaviour. In [13], �Hpp(T )/�Hpp(∞) versus T/TC from various systems were plotted and
they lie on a same line. In our calculation, we do not have a�Hpp(∞). However, if we divide
�Hpp(T ) or 1/T2 by a �Hpp at a sufficiently high temperature, the factor (F 2 +G2)/kBTC
will be cancelled and a universal curve will appear.
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Appendix

Here, we consider the contribution of the self-energy of boson propagators to the computation
of equation (30). Applying the Matsubara formalism [40], we change the summation into
integration:

1

β

∑
m,p,q

D(iωm, p)D(iωn + iωm, q) = − 1

2πi

∑
p,q

∫
C

dzD(z, p)D(z+ iωn, q)n(z), (A.1)

where contour C encloses all the poles except those of n(z). Owing to the self-energy, the
propagator has a continuous distribution of poles. They form a branch cut. The contour can
now be deformed so that the integration paths are along each side of the cuts:

1

β

∑
m,p,q

D(iωm, p)D(iωn + iωm, q)

= − 1

2πi

∑
p,q

∫
dz n(z){D(z, p)[D(z+ iωn + iδ, q)−D(z+ iωn − iδ, q)]

+D(z+ iωn, q)[D(z+ iδ, p)−D(z− iδ, p)]. (A.2)

Using the properties of propagators, we have

1

β

∑
m,p,q

D(iωm, p)D(iωn + iωm, q)

= −1

2

∑
p,q

∫
dz n(z)[D(z− iωn, p)+D(z+ iωn, p)]Im D(z, q). (A.3)

When computing Re φ from Imψ, we need to take the derivative with respect to ωn and then
set ωn to 0 (see equation (11)),

1

iβ

∂

∂ωn

∑
m,p,q

D(iωm, p)D(iωn + iωm, q)

= 1

2

∫
dz[D(z+ iωn, p)−D(z− iωn, p)]

∂

∂z
[Im D(z, q)n(z)], (A.4)

where integration by parts and interchanging of p and q were made. By setting ωn equal to
zero, the right hand side of equation (A.4) becomes

iπ
∑
p,q

∫
dz ImD(z, p)

∂

∂z
[Im D(z, q)n(z)]

= iπ

2

∑
p,q

∫
dz ImD(z, p)Im D(z, q)

∂n(z)
∂z

(A.5)

and, thus, gives the factor ∂n(z)/∂z. The vertex correction usually gives a multiplying factor
and, hence, is unlikely to neutralize it.
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